Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others

نویسندگان

  • Franziska Bandau
  • Vicki Huizu Guo Decker
  • Michael J. Gundale
  • Benedicte Riber Albrectsen
  • Jian Liu
چکیده

Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype's baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a higher plasticity to nitrogen addition, and potentially an advantage when adapting to higher concentrations of soil nitrogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genotypic variation in growth and physiological responses of Finnish hybrid aspen (Populus tremuloides x P. tremula) to elevated tropospheric ozone concentration.

Saplings of six Finnish hybrid aspen (Populus tremuloides Michx. x P. tremula L.) clones were exposed to 0, 50, 100 and 150 ppb ozone (O3) for 32 days in a chamber experiment to determine differences in O3 sensitivity among genotypes. Based on the chamber experiment, three clones with intermediate sensitivity to O3 were selected for a free-air O3 enrichment experiment in which plants were expos...

متن کامل

Can Physiological and Anatomical Characters Be Used for Selecting High Yielding Hybrid Aspen Clones?

Stomatal, CO2 exchange parameters and several leaf and growth traits were recorded in a fi ve-year-old hybrid aspen clone trial. The fi eld trial consisted of four aspen hybrid clones (Populus tremula L. × P. tremuloides Michx.) and one local Populus tremula seedling source. The mean estimated height of hybrid aspen clones was 1.6 times higher than for P. tremula. Similarly, basal diameter was ...

متن کامل

Growth and yield responses of two forage sorghum cultivars to different nitrogen fertilizer rates

In order to evaluate the impact of different amounts of nitrogen fertilizer on growth and yield of two forage sorghum cultivars, a 2-year field experiment was carried out at the College of Agriculture, Shiraz University, Shiraz, Iran during 2010 and 2011 growing seasons. Two factorial experiments were carried out in randomized block design with three replicates, in which the treatments included...

متن کامل

The impact of atmospheric temperature and soil nitrogen on some physiological traits and dry matter accumulation of wheat (Triticum aestivum cv. Bahar)

Wheat is the most important cereal crop in the world as well as in Iran. The studies related to the effects of global climate change on wheat production usually assess the impact of changes in atmospheric CO2 concentration and temperature on growth and yield. On the other hand, nitrogen is the most crucial plant nutrient for crop production and the proper management and improving the utilizatio...

متن کامل

Effect of different level water and nitrogen on morphological and physiological traits of Matricaria aurea L.

Background & Aim: Matricaria aure is one of medicinal plants belonging to Asteraceae family. They naturally grow in some regions of the country and have different medical properties and various applications in medicine production and traditional medications. Ecological conditions have a significant impact on growth, performance, and quality of medical plants. The aim of this research i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015